Nod genes and Nod signals and the evolution of the Rhizobium legume symbiosis.

نویسندگان

  • F Debellé
  • L Moulin
  • B Mangin
  • J Dénarié
  • C Boivin
چکیده

The establishment of the nitrogen-fixing symbiosis between rhizobia and legumes requires an exchange of signals between the two partners. In response to flavonoids excreted by the host plant, rhizobia synthesize Nod factors (NFs) which elicit, at very low concentrations and in a specific manner, various symbiotic responses on the roots of the legume hosts. NFs from several rhizobial species have been characterized. They all are lipo-chitooligosaccharides, consisting of a backbone of generally four or five glucosamine residues N-acylated at the non-reducing end, and carrying various O-substituents. The N-acyl chain and the other substituents are important determinants of the rhizobial host specificity. A number of nodulation genes which specify the synthesis of NFs have been identified. All rhizobia, in spite of their diversity, possess conserved nodABC genes responsible for the synthesis of the N-acylated oligosaccharide core of NFs, which suggests that these genes are of a monophyletic origin. Other genes, the host specific nod genes, specify the substitutions of NFs. The central role of NFs and nod genes in the Rhizobium-legume symbiosis suggests that these factors could be used as molecular markers to study the evolution of this symbiosis. We have studied a number of NFs which are N-acylated by alpha,beta-unsaturated fatty acids. We found that the ability to synthesize such NFs does not correlate with taxonomic position of the rhizobia. However, all rhizobia that produce NFs such nodulate plants belonging to related tribes of legumes, the Trifolieae, Vicieae, and Galegeae, all of them being members of the so-called galegoid group. This suggests that the ability to recognize the NFs with alpha-beta-unsaturated fatty acids is limited to this group of legumes, and thus might have appeared only once in the course of legume evolution, in the galegoid phylum.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Structure-function analysis of nod factor-induced root hair calcium spiking in Rhizobium-legume symbiosis.

In the Rhizobium-legume symbiosis, compatible bacteria and host plants interact through an exchange of signals: Host compounds promote the expression of bacterial biosynthetic nod (nodulation) genes leading to the production of a lipochito-oligosaccharide signal, the Nod factor (NF). The particular array of nod genes carried by a given species of Rhizobium determines the NF structure synthesize...

متن کامل

Nod Factor Signaling and Infection in Rhizobium-legume Symbiosis

Dit onderzoek is uitgevoerd binnen de onderzoekschool Experimentele Planten Wetenschappen (EPS) Nod factor signaling and infection in Rhizobium-legume symbiosis

متن کامل

Flavonoids as Signaling Molecules and Regulators of Root Nodule Development

Flavonoids are a diverse class of secondary plant metabolites, synthesized from phenylpropanoid precursors, which play an array of important functions in plants, ranging from floral pigments for the attraction of insect pollinators to antioxidants and auxin transport inhibitors. Many plant species also use flavonoids as signal molecules for beneficial microorganisms in the root rhizosphere, and...

متن کامل

Nod Factor-Independent Nodulation in Aeschynomene evenia Required the Common Plant-Microbe Symbiotic Toolkit.

Nitrogen fixation in the legume-rhizobium symbiosis is a crucial area of research for more sustainable agriculture. Our knowledge of the plant cascade in response to the perception of bacterial Nod factors has increased in recent years. However, the discovery that Nod factors are not involved in the Aeschynomene-Bradyrhizobium spp. interaction suggests that alternative molecular dialogues may e...

متن کامل

Plant Cell Wall Remodelling in the Rhizobium–Legume Symbiosis

∗Corresponding author. E-mail: [email protected] Abbreviations: AGP, Arabinogalactan protein; GPI-anchor, Glycosylphosphatidylinositol lipid anchor; HRGP, Hydroxyproline-rich glycoprotein; IT, Infection thread; NF, Nod-factor (Lipochitin oligosaccharide); LPS, lipolysaccharide; PRP, proline-rich protein; UDP, uridine diphosphate Colonization of host cells by rhizobium bacteria involves th...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Acta biochimica Polonica

دوره 48 2  شماره 

صفحات  -

تاریخ انتشار 2001